Global Leaders in Deep Exploration

An Introduction to Quantec.

Illuminating the subsurface Since 1986

www.quantecgeo.com | @quantecgeo | (416)-306-1941

Three Key Markets

Mineral exploration

Grassroots & brownfield environments

Geothermal exploration

Evaluate potential geothermal resources

Oil & Gas exploration

- Image through permafrost, heavy oil & volcanic cover
- □ Augment seismic in challenging environments with 3D resistivity

Values and actions

Committed to safe operations

Safety

- Dedicated Health & Safety Specialist
- Safety HSE management system
- Member of GGSSA
- Pre-field risk assessment
- Training (First Aid, WHMIS, driving, ATV, worker HSE awareness training, etc.)

Experience

Our safe operations keep our most demanding clients happy. We operate safely for Junior Explorers and are approved operators for Major Mining companies like Rio Tinto, BHP and NEXA.

Health and Safety Excellence program Member

Proven World Leading Technology and Services

Technology for Discovery

2D Deep earth imaging – distributed array based data acquisition : Flexible deployments of: IP and AMT and MT

 Flexible 1D, 2D and 3D deep resistivity imaging utilizing high resolution 24-bit AMT & MT

Broad Range of Geophysical Expertise and Services

- Survey design, logistics planning, acquisition, QA/QC, interpretation, inversion modelling 2D and 3D, data integration and consulting services
- Complete suite of conventional ground geophysical surveys including; Gravity, Magnetic, Radiometric, DCIP TEM (surface and borehole) & CSAMT

SPARTAN MT full tensor magnetotellurics

MT natural source fields

Solar Wind

- Lower frequencies:f < 1 Hz
 - Interaction of the solar wind with the earth's magnetic field

9/80

Global Thunderstorms

- □ Higher frequencies:
 - □ f > 1 Hz
 - □ Lightning activity

MT – frequency bandwidth & survey types

10/80

MT/AMT/CSAMT

Generally refers to Broad Band recording from >10,000 Hz to .001Hz (also referred to as 1000 seconds) or as low as 10K S (.0001Hz) from surface to great depths – (up to 100km and more)

- Refers to "Audio" frequencies
- □ Generally recording > 10,000 Hz to 1Hz
- □ The bandwidth works well where high resolution inversion modeled resistivity results are needed to depths of **1** km, (more or less).

- Refers to "Controlled Source" AMT (depth range of up to 1000m but typically useful for 500m more or less due to source effects)
- Advantageous for measurements with smaller dipoles less than 50m

MT deployments and processing

SPARTAN MT

12/80

MT data acquisition

Measure the natural **electric field** and the natural **magnetic field** over a range of frequencies

Quantec's Calibration chamber for MT coils

3-Layer Passive Magnetically Shielded Room

Typical equipment required for one site

Portable - can go almost anywhere

SPARTAN MT - ARIZONA

Testing the coils prior to starting a survey

FIELD SETUP

Various images above showing layout of field equipment including recording systems, cables, electrode and buried magnetometer sites.

SPARTAN MT

MT applications - flexible resistivity mapping

Mining & Exploration

- Porphyry exploration
- Gold exploration
- Brine mapping
- Structural mapping Faults/ shears
- Near-mine exploration
- Pre-Mine Risk evaluation
- Regional potential target evaluation
- Basin mapping (depth of cover)
- Crustal studies
- Geothermal
- Oil & Gas

Timmins Camp, Dester Porcupine fault mapping

Pur-Banera Prospect, Rajasthan, India Kavdia et al., 2015).

GEOTHERMAL Experience & CASE STUDIES

Deep Regional transects GSC-Yukon Government Geothermal MT initiative 2023

Gov't Reference

Whitehorse, Yukon February 27, 2023

To whom it may concern:

Quantec Geoscience completed two MT surveys under contract for the Yukon Geological Survey (YGS) in 2021 and 2022. These surveys were designed in collaboration with geophysicists from the Geological Survey of Canada (GSC) in support of the YGS geothermal exploration program in southern Yukon. The surveys were combination of detailed AMT/MT grids focused on specific target areas and regional MT transects with stations spaced every 10 km along highway corridors. Quantec has a contract with the YGS for completion of the regional MT transects in summer 2023.

Our experience working with Quantec was professional and positive. Throughout the survey, the Quantec crew maintained daily communication with YGS and GSC which allowed for adjustments in survey acquisition to ensure optimal data quality. We look forward to work with Quantec again in 2023 for completion of our regional MT survey.

Feel free to contact me should you require additional information on the surveys that Quantec conducted for YGS.

Sincerely,

Maurice Colpron, Ph.D. Head, Bedrock Geology

Yukon Geological Survey PO Box 2703 (K14) Whitehorse, YT Y1A 2C6 Canada Ph. 867.667.8235 E Maurice.Colpron@yukon.ca

GEOTHERMAL CASE STUDIES

MT survey for Cluff in Ethiopia utilising nominal 700 metres

MT 3D Resistivity Model

MT 3D Resistivity Model (shown down to 6 km)

MT 3D Resistivity Model (cut at 2 km depth)

MT 3D Resistivity Model (cut at 30 Ohm-M)

Resistivity plan view at 2000m depth

2000 m Depth slice shown on surface

Resistivity plan view at 2000m depth

- Induction Vectors, superimposing the resistivity model.
- Induction Vectors independently confirms the geometry of lava flow by pointing towards the conductor.

MT 3D Resistivity Inversion model (cut at 30 Ohm-M)

GEOTHERMAL CASE STUDIES Turkey

TURKEY GEOTHERMAL PROJECT

Regional Tectonics

- Northward motion of African and Arabian plates
- Closure of the Tehys Ocean 13 Ma
- Arabia-Eurasia collision and uplifting

- Development of NAF and EAF
- Extrusion of Anatolian Block
- Trench roll back and extension.

SPARTAN MT SPARTAN MT

Heat distribution

Curie point (580 C) depth and heat flow maps of Turkey (Aydin, et al., 2005).

Note that the Curie depth in western Anatolia is ~10 km. This is significantly shallower than the rest of the country.

Higher heat flow values >100 mW/m² are also coincident with shallow Curie depth

Targeting Regional Heat Indications

Location of major deothermal fields in Turkey (Serpen et al. 2009)

The geothermal systems associated with volcanism are common in the central and eastern part.

Many hot springs and wells with temperatures >200°C are indicating the geothermal potential in western Turkey. Faults play an important role as well as the reservoir in western Turkey.

Delineating of the basement structure and the faults is direct interest to geothermal exploration in western Turkey

SPARTAN MT site preparation

MT maps deep resistivity

- High resistivity contrast
- Deep penetration
- Portable
- Non-invasive
- "Lower" cost

Case – Denizli, Turkey

Survey Layout

 92 MT sites were collected in April, 2013. Survey area is highly industrialized mainly within the graben.

• Remote site was located 60 km away from the grid.

• 48kHz, 12kHz and 1kHz (continuous) sampling rates were used for data

High Quality data required for deep imaging accuracy

• High quality 5-channel MT data were acquired by using Spartan MT data loggers.

SPARTAN MT

Varying responses at different sites

 High quality 5-channel MT data were acquired by using Spartan MT data loggers.

Data processing and Inversion

- Average site spacing is 1-2 km
- 87 sites used for 3D inversion
- Full MT tensor (Zxx, Zxy, Zyx, Zyy)
- 8% error floor
- Topography was included
- 30 Ohm-m half-space initial model
- Dx, Dy, Dz: 400m, 400m, 40m
- 1000 Hz to 0.002 Hz frequency band
- Total of 18 frequency
- Final RMS was 1.25
- WSINV3DMT (Siripunvaraporn etal., 2005)

Geological Model of Denizli

Expected cross-section (2 km) of the Denizli Graben (Akman, 2013)

Denizli graben contains two types of infills.

- 1. Ancient: 660 m thick Middle Miocene-Middle Pliocene deposits controlled and deformed by ~N-S extension then compression in the latest Pliocene (Kocyigit, 2005).
- 2. Modern: 350 m thick, undeformed Plio-Quaternary deposits (Kocyigit, 2005).

2D resistivity sections

Good geological correlation

SPARTAN MT

(ohm-m)

LINE Denizli D1 WS 3D MT from Homogeneous Half-Space model - MT_WS3D

Resistivity Depth Slices

SPARTAN MT

Resistivity Depth slices

SPARTAN MT SPARTAN MT

UTM Y (metres)

Conclusions

- MT imaged the sedimentary fill of the Denizli graben and underlying Menderes metamorphics.
- Well locations were determined by use of MT, seismic and structural geology to reduce drilling risk.
- Computational requirements for 3D inversion has been matched by recent developments on computer clusters. However, most MT surveys are designed as a grid and more MT stations are collected than ever before.
- Closely spaced MT sites required to build better constrained models as well as static shift control.
- Good quality MT data can be collected EVEN AROUND INDUSTRIALIZED AND POPULATED AREAS.

SPARTAN MT (SENSOR TESTING AT START OF SURVEY)

Case Study Gulpinar Turkey

Gulpinar MT study

UTM X (metres)

146 Sparks Ave

Project: CA00987:

Toronto, ON M2H 2S4 Canada

Date: Dec 7 - Dec 18, 2013

Quantec Geoscience

SPARTAN

Depth slice 3000 metres

UTM X (metres)

(meters)

Hx

Quantec Geoscience

 \Leftrightarrow

Date: Dec 7 - Dec 18, 2013

146 Sparks Ave

Project: CA00987:

Toronto, ON M2H 2S4 Canada

SPARTAN MT

Resistivity Sections (shown to 5000 metres)

SPARTAN MT

Case Study Sarigol Turkey

Sarigol, Turkey

UTM Y (metres)

ohm-m

MT Resistivity Plan Map at Elevation=0 metres

UTM X (metres)

Sarigol, Turkey

5.0

MT Resistivity Plan Map at Elevation=-4000 metres

UTM X (metres)

Sarigol, Turkey

Some Geothermal Clients

- Yukon Geological Survey
- Blackrock Geoscience
- Baseload Power
- Ormat Technologies
- Geoscience Australia
- AltaRock Energy
- Magma/Alterra
- Mighty River Power
- Hot Rock Ltd.
- Ram Power
- University Of Utah
- Energy and Geoscience Institute
- Panax Geothermal
- **Energy Source LLC.**
- Transmark Renewables

- Sierra Geothermal Power Inc.
- Promete Jeotermal
- Turkerler Jeotermal
- Cluff Geothermal Ltd.
- Lawrence Berkeley National Laboratories
- Bereket Jeotermal
- Geologica
- Blackrock Geoscience
- Sonsuzluk
- Vonder Jeotermal
- Cyrq Energy
- Zorlu Jeotermal
- Enerco

Illuminating the subsurface since 1986

www.Quantecgeo.com

TITAN is multi parameter - this means it can also be used to collect MT data

2 significant surveys DCIP in the DAY + MT at night

